Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation.

Identifieur interne : 001869 ( Main/Exploration ); précédent : 001868; suivant : 001870

Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation.

Auteurs : Oleksandr Skyba [Canada] ; Dan Cullen [États-Unis] ; Carl J. Douglas [Canada] ; Shawn D. Mansfield [Canada]

Source :

RBID : pubmed:27208101

Descripteurs français

English descriptors

Abstract

UNLABELLED

Identification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the annotated genomes of the brown- and white-rot fungi, Rhodonia placenta (formerly Postia placenta) and Phanerochaete chrysosporium, respectively. We monitored the expression of genes involved in the enzymatic deconstruction of the cell walls of three 4-year-old Populus trichocarpa (poplar) trees of genotypes with distinct cell wall chemistries, selected from a population of several hundred trees grown in a common garden. The woody substrates were incubated with wood decay fungi for 10, 20, and 30 days. An analysis of transcript abundance in all pairwise comparisons highlighted 64 and 84 differentially expressed genes (>2-fold, P < 0.05) in P. chrysosporium and P. placenta, respectively. Cross-fungal comparisons also revealed an array of highly differentially expressed genes (>4-fold, P < 0.01) across different substrates and time points. These results clearly demonstrate that gene expression profiles of P. chrysosporium and P. placenta are influenced by wood substrate composition and the duration of incubation. Many of the significantly expressed genes encode "proteins of unknown function," and determining their role in lignocellulose degradation presents opportunities and challenges for future research.

IMPORTANCE

This study describes the variation in expression patterns of two wood-degrading fungi (brown- and white-rot fungi) during colonization and incubation on three different naturally occurring poplar substrates of differing chemical compositions, over time. The results clearly show that the two fungi respond differentially to their substrates and that several known and, more interestingly, currently unknown genes are highly misregulated in response to various substrate compositions. These findings highlight the need to characterize several unknown proteins for catalytic function but also as potential candidate proteins to improve the efficiency of enzymatic cocktails to degrade lignocellulosic substrates in industrial applications, such as in a biochemically based bioenergy platform.


DOI: 10.1128/AEM.00134-16
PubMed: 27208101
PubMed Central: PMC4959194


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation.</title>
<author>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada shawn.mansfield@ubc.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27208101</idno>
<idno type="pmid">27208101</idno>
<idno type="doi">10.1128/AEM.00134-16</idno>
<idno type="pmc">PMC4959194</idno>
<idno type="wicri:Area/Main/Corpus">001784</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001784</idno>
<idno type="wicri:Area/Main/Curation">001784</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001784</idno>
<idno type="wicri:Area/Main/Exploration">001784</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation.</title>
<author>
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada shawn.mansfield@ubc.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, British Columbia</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Profiling (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Microarray Analysis (MeSH)</term>
<term>Polyporales (genetics)</term>
<term>Polyporales (growth & development)</term>
<term>Polyporales (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Wood (chemistry)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse sur microréseau (MeSH)</term>
<term>Bois (composition chimique)</term>
<term>Bois (microbiologie)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Polyporales (croissance et développement)</term>
<term>Polyporales (génétique)</term>
<term>Polyporales (métabolisme)</term>
<term>Populus (microbiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Bois</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Polyporales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Polyporales</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Polyporales</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Polyporales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Polyporales</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Polyporales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Genes, Fungal</term>
<term>Microarray Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse sur microréseau</term>
<term>Gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>UNLABELLED</b>
</p>
<p>Identification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the annotated genomes of the brown- and white-rot fungi, Rhodonia placenta (formerly Postia placenta) and Phanerochaete chrysosporium, respectively. We monitored the expression of genes involved in the enzymatic deconstruction of the cell walls of three 4-year-old Populus trichocarpa (poplar) trees of genotypes with distinct cell wall chemistries, selected from a population of several hundred trees grown in a common garden. The woody substrates were incubated with wood decay fungi for 10, 20, and 30 days. An analysis of transcript abundance in all pairwise comparisons highlighted 64 and 84 differentially expressed genes (>2-fold, P < 0.05) in P. chrysosporium and P. placenta, respectively. Cross-fungal comparisons also revealed an array of highly differentially expressed genes (>4-fold, P < 0.01) across different substrates and time points. These results clearly demonstrate that gene expression profiles of P. chrysosporium and P. placenta are influenced by wood substrate composition and the duration of incubation. Many of the significantly expressed genes encode "proteins of unknown function," and determining their role in lignocellulose degradation presents opportunities and challenges for future research.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>IMPORTANCE</b>
</p>
<p>This study describes the variation in expression patterns of two wood-degrading fungi (brown- and white-rot fungi) during colonization and incubation on three different naturally occurring poplar substrates of differing chemical compositions, over time. The results clearly show that the two fungi respond differentially to their substrates and that several known and, more interestingly, currently unknown genes are highly misregulated in response to various substrate compositions. These findings highlight the need to characterize several unknown proteins for catalytic function but also as potential candidate proteins to improve the efficiency of enzymatic cocktails to degrade lignocellulosic substrates in industrial applications, such as in a biochemically based bioenergy platform.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27208101</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2016</Year>
<Month>07</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation.</ArticleTitle>
<Pagination>
<MedlinePgn>4387-4400</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00134-16</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Identification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the annotated genomes of the brown- and white-rot fungi, Rhodonia placenta (formerly Postia placenta) and Phanerochaete chrysosporium, respectively. We monitored the expression of genes involved in the enzymatic deconstruction of the cell walls of three 4-year-old Populus trichocarpa (poplar) trees of genotypes with distinct cell wall chemistries, selected from a population of several hundred trees grown in a common garden. The woody substrates were incubated with wood decay fungi for 10, 20, and 30 days. An analysis of transcript abundance in all pairwise comparisons highlighted 64 and 84 differentially expressed genes (>2-fold, P < 0.05) in P. chrysosporium and P. placenta, respectively. Cross-fungal comparisons also revealed an array of highly differentially expressed genes (>4-fold, P < 0.01) across different substrates and time points. These results clearly demonstrate that gene expression profiles of P. chrysosporium and P. placenta are influenced by wood substrate composition and the duration of incubation. Many of the significantly expressed genes encode "proteins of unknown function," and determining their role in lignocellulose degradation presents opportunities and challenges for future research.</AbstractText>
<AbstractText Label="IMPORTANCE">This study describes the variation in expression patterns of two wood-degrading fungi (brown- and white-rot fungi) during colonization and incubation on three different naturally occurring poplar substrates of differing chemical compositions, over time. The results clearly show that the two fungi respond differentially to their substrates and that several known and, more interestingly, currently unknown genes are highly misregulated in response to various substrate compositions. These findings highlight the need to characterize several unknown proteins for catalytic function but also as potential candidate proteins to improve the efficiency of enzymatic cocktails to degrade lignocellulosic substrates in industrial applications, such as in a biochemically based bioenergy platform.</AbstractText>
<CopyrightInformation>Copyright © 2016, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skyba</LastName>
<ForeName>Oleksandr</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cullen</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Douglas</LastName>
<ForeName>Carl J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada shawn.mansfield@ubc.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046228" MajorTopicYN="N">Microarray Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020072" MajorTopicYN="N">Polyporales</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27208101</ArticleId>
<ArticleId IdType="pii">AEM.00134-16</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00134-16</ArticleId>
<ArticleId IdType="pmc">PMC4959194</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol J. 2015 Apr;10(4):510-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25676392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Jun 20;8:90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26136828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Oct 8;51(21):6178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Sep;59(6):618-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jul;101(13):4775-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20171088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Oct;97(19):8455-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23995228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Dec;29(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2009 Jun;55(3):273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10342-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10962023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Dec;78(23):8441-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Oct;63(10):3804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Oct;77(19):7007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jan;79(2):488-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23124232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2012 Jul;28(4):893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22132148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Nov 02;5(1):80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2011 Dec 16;6(12):1399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22004347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):286-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2011 Mar;11 Suppl 1:81-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21429165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1412-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2014 Mar;98 (6):2819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Mar 21;6(1):41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23514094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(13):4499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Sep;80(18):5828-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25015893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2000 Nov-Dec;16(6):1025-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):777-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23278123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Oct 8;330(6001):219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20929773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Apr 20;49(15):3305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):804-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Colombie-Britannique </li>
<li>Wisconsin</li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Skyba, Oleksandr" sort="Skyba, Oleksandr" uniqKey="Skyba O" first="Oleksandr" last="Skyba">Oleksandr Skyba</name>
</region>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</country>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001869 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001869 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27208101
   |texte=   Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27208101" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020